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Abstract

The Curry-Howard Isomorphism is an idea dating back to the early th century for
relating logic and the lambda calculus, a certain abstract model of a programming
language. Originally, such a relationship was only established with intuitionistic
logic. However, continued work eventually produced an isomorphism between
classical logic and an extension of the lambda calculus. We lay out an introduc-
tion to formal logic and the lambda calculus to motivate the basic isomorphism,
present the original result, and explore the issue of extending the correspondence
to classical logic in detail. The process of producing this extension and studying
it illuminates some of the basic properties of classical and intuitionistic logic in a
novel manner.





Introduction

T
 Curry-Howard Correspondence, or Isomorphism, is a remarkable re-
lation between programs and proofs. Speciàcally, it relates terms of the
simply-typed lambda calculus to proofs in a natural deduction system of

intuitionistic logic.
Let’s bring out the basic idea of what’s going on with a simple example. Sup-

pose we are performing a proof, and we have derivations of both p and p Ñ q.
Then, by the familiar operation of modus ponens, we may derive q. On the other
hand, suppose that we are writing a program of some sort, and we have an expres-
sion that computes a value of type ϕ along with a function that takes a parameter
of typeϕ and returns a value of typeψ. In fact, this function could be thought of as
having a type, something like ϕ Ñ ψ. Then, it makes sense to apply this function
to our expression of type ϕ, and we would regard this whole application expres-
sion as having type ψ. This illustrates a structural correspondence between use of
modus ponens in proofs and function application in programs. This observation is
the basic idea underlying the Curry-Howard Isomorphism.

It turns out that the idea of a program that takes things of one type and produces
(or, perhaps more suggestively, constructs) something of another type corresponds
to an interpretation of intuitionistic proofs as themselves being constructions. That
is, we can think of a proof of p Ñ q as a procedure for turning proofs of p into
proofs of q. Similarly, we can think of modus ponens as being a “recipe” for a new
constructive proof: if we have a proof of p and a proof of p Ñ q, we can combine
them to get a proof of q.

The general idea of relating programs to proofs has been expanded to other
computational calculi and formalizations of different systems of logic, and any
such correspondence is usually classiàed under the general umbrella term “Curry-
Howard Correspondence.” The details of the original correspondence exploit par-
ticular features of the typed lambda calculus and of the natural deduction system
for intuitionistic logic. If, however, we wish to ànd a similar correspondence for
a different logical system, such as a Hilbert-style axiomatic system of intuitionis-
tic logic, we must turn instead to something other than the simply-typed lambda
calculus — a system called combinator logic, in this case [SU, ch. ]. All of this
talk of “constructions” may suggest that there is something fundamentally intu-
itionistic about the Curry-Howard correspondence. However, this is not the case:

This is known as the Brouwer-Heyting-Kolmogorov interpretation. See [SU, p. –] for further
details.
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in , the idea was ànally generalized to classical logic by Grifàn in [Gri].
The fact that these further isomorphisms are possible to begin with leads us to

wonder how far this project can be generalized. In particular, we may ask:

. For which systems of logic is there a reasonable computational calculus that
it can be placed in correspondence with?

. How do the particular features of these systems of logic and computational
calculi relate to and illuminate each other?

So far, so good. Even if we were to stop here, we would have a fruitful mecha-
nism for studying proofs in terms of programs, and vice versa. However, we can
go even further. These various systems of logic do not stand completely alone and
independent of each other. Consider, for example, the Kolmogorov double nega-
tion embedding of classical logic in intuitionistic logic. As it turns out, this can be
made sense of on the computational side of the correspondence, as well. So, let’s
additionally ask ourselves one further question:

. How do the connections between different systems of logic correspond to
connections between different computational calculi?

This gives us a pretty good road map with which to proceed. To begin answer-
ing these questions, we need to start by laying out our formalizations of computa-
tional and logical systems in detail.
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Logic

O
 investigation must begin with a development and formalization of a
system of logic. For our purposes, we will be concerned solely with propo-
sitional logic. Full-blown àrst-order logic with quantiàcation can be used

to form very complicated expressions, such as:

(Dx)(@y)(␣FyÑ Gxy_Gyx)

which says, roughly, “there is some x such that any y that isn’t F is borne G by x or
bearsG to x.” With propositional logic, we are limited to examples of the following
form:

pÑ q^ r

which we may interpret as saying “if p, then q and r.” That is, we have letters
to stand in for propositions and sentential connectives to glue them together, but
nothing else.

From a certain standpoint, propositional logic may not appear to be very inter-
esting. It is primarily seen as the foundation for àrst-order and higher logics, and
the grand logical results of the early th century — compactness, incompleteness,
and so on — all deal with àrst-order logic. However we are headed in a direction
where the richness of the structure of propositional logic will become apparent.

. Language

Wewish to rigorously deàne a system of propositional logic— a language together
with rules of derivation. There are, in fact, many ways in which this can be done,
so we will take a moment to àx a system for our use here.

First, we have our alphabet. This consists of:

. One proposition symbol for each natural number, p1,p2,p3, . . .

. The special proposition symbol K, representing the false proposition.

. The connectivesÑ (“if-then”), _ (“or”), and ^ (“and”).
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. Left and right parentheses, ( and ).

Now we may deàne a language on top of this alphabet recursively as follows:

Deànition .. LetA be a set of strings over our alphabet. Then we say thatA PM
iff the following conditions hold:

. pi P A for all i P N.

. If α,β P A, then (αÑ β) P A, (α_ β) P A, and (α^ β) P A as well.

Deànition .. We deàneM, our language of logic, as follows:

M =
č

APM

A

To give a more concrete sense of what our language looks like, here are some
strings inM:

. (p1 Ñ K)

. ((p1 Ñ p2)Ñ p2)

. (p1 Ñ (p1 _ p2))

. ((p1 Ñ p2)^ (p2 Ñ p1))

Note that our notation is slightly minimalist. Since this bare language is not
always intuitive to deal with or particularly convenient when not working at the
meta level, we’ll introduce some abbreviations that will make our formulae more
readable. In particular, let’s adopt the following conventions:

. Distinct letters of the alphabet such as p,q, r, . . . may stand in for our sub-
scripted proposition symbols for the sake of legibility.

. We use ␣p to abbreviate (pÑ K).

We will freely sprinkle these abbreviations throughout our discussion, although it
should always be understood that they should be ultimately unwrapped into the
underlying language as deàned above.

. Natural Deduction

Now that we have deàned our language, we wish to deàne our system of deduc-
tion. For our initial purposes, we will deàne a system of intuitionistic logic. There
are actually several ways to accomplish this, but we’ll adopt a natural deduction
system, which will work well for our purposes. There are other systems that are
interesting in their own right, including from aCurry-Howard perspective, but this
is the best place to start, and was historically the system àrst used in formulating
the isomorphism.

Our judgments about deductions will be expressed in symbols in the following
manner:
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(AX)
Γ ,α $ α

Γ $ K
(PC)

Γ $ α

Γ ,α $ β
(DP)

Γ $ αÑ β

Γ $ α,αÑ β
(MP)

Γ $ β

Γ $ α
(_I1)

Γ $ α_ β

Γ $ β
(_I2)

Γ $ α_ β

Γ $ α_ β Γ ,α $ δ Γ ,β $ δ
(_E)

Γ $ δ

Γ $ α^ β
(^E1)

Γ $ α

Γ $ α^ β
(^E2)

Γ $ β

Γ $ α,β
(^I)

Γ $ α^ β

Figure .: Natural Deduction Rules for Intuitionistic Logic

Deànition . (Derivation Expression). An expression of the form Γ $ α where Γ
is a ànite set of sentences and α is a single sentence is called a derivation expression.
This particular example can be read as saying “Γ (syntactically) implies α.” When
listing the premises on the left-hand side of the turnstile symbol, we will typically
abbreviate expressions of the form “ΓYtαu” as “Γ ,α”. Similarly, wewill abbreviate
the conjunction of “Γ $ α” and “Γ $ β” as “Γ $ α,β”.

In addition, we need notation for how we move from one such judgment to the
next. When we write something of the form (where we might have k = 0):

Γ1 $ α1 Γ2 $ α2 ¨ ¨ ¨ Γk $ αk
(X)

∆ $ β

we mean that we can deduce ∆ $ β from Γ1 $ α1 through Γk $ αk using rule X.
Γ1 $ α1 through Γk $ αk are said to be the premises of this deduction step, while
∆ $ β is said to be the conclusion. We may write multi-step deductions recursively
in a tree format, where the premise of one rule application is the conclusion of
another rule application; this will be demonstrated in practice in the next section.

Deànition . (Leaf). A deduction step in a tree such that its premises are not the
conclusion of any other deduction step is called a leaf.

Deànition . (Proof). A tree whose leaves have no premises is called a proof. If
Γ $ α is the derivation expression at the bottom of the tree, then we say that it is a
proof of Γ $ α.
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(AX)
Γ ,α $ α

Γ $ K
(PC)

Γ $ α

Γ ,α $ β
(DP)

Γ $ αÑ β

Γ $ α,αÑ β
(MP)

Γ $ β

Figure .: Natural Deduction Rules for The Implicational Fragment

Deànition . (Theorem). If we can prove $ α, then we say that α is a theorem.

Now,we introduce the speciàc rules bywhichwe canmove fromone derivation
expression to another. For example, if we have some background set of premises
Γ from which we can derive α and α Ñ β, we should be able to derive β from Γ .
This is the familiar rule of inference known as modus ponens. Our system has ten
such rules, summarized in àgure . on page .

In addition to the rule MP for modus ponens, already discussed, we have rules
corresponding to axiom introduction (AX), proof by contradiction (PC), and the
deduction principle (DP). AX just states that, if α is among our assumptions, that
implies α. PC allows us to deduce anything from K; since K is the false proposi-
tion, deriving it shows a contradiction. The deduction principle says that, if α is
among our suppositions in proving β, we can prove from our other suppositions
that αÑ β. Finally, we have introduction and elimination rules for_ and^. Since
_ corresponds to the “or” connective, showing α_ β just requires showing one of
α or β and then performing _I1 or _I2. Deriving anything from α _ β, however,
is more complicated, requiring deriving some δ from both α and β. Our rules for
^ are similar, except that introducing ^ is more complicated than eliminating. If
we can derive α and β on their own, then ^I allows us to derive α ^ β. On the
other hand, once we have α ^ β, rules ^E1 and ^E2 allow us to derive α and β,
respectively.

Before moving on, we need to note one particular subset of our system that is
very simple to study and produces the most natural computational interpretation
possible when we go on.

Deànition . (Implicational Fragment). The implicational fragment of intuitionistic
logic is the system obtained by taking only those sentences consisting of propo-
sition symbols other than K, implication, and parentheses, and applying only the
deduction rules found in àgure ., namely AX, PC, DP, andMP. Wewill also con-
sider the implicational fragment with falsehood, which is the same system as before,
but with K included in the alphabet.

PC, however, can only be used if we allow K to occur in our sentences to begin with.
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. Some Examples and Results

In order to get the sense of how our system works and what sort of theorems it
can prove, it will be instructive to look at some examples. In particular, it will be
instructive to take a closer look at the implicational fragment, as it is both theoreti-
cally interesting and also perhaps somewhat unintuitive. Suppose that we wish to
show that pÑ ((pÑ q)Ñ q) is a theorem. We may do so as follows:

(AX)
p,pÑ q $ p

(AX)
p,pÑ q $ pÑ q

(MP)
p,pÑ q $ q

(DP)
p $ (pÑ q)Ñ q

(DP)
$ pÑ ((pÑ q)Ñ q)

This illustrates the aforementioned use of our deduction rules to build “trees” rep-
resenting proofs.

As it turns out, we can replace q with K and derive p Ñ ␣␣p as a theorem as
well:

(AX)
p,pÑ K $ p

(AX)
p,pÑ K $ pÑ K

(MP)
p,pÑ K $ K

(DP)
p $ (pÑ K)Ñ K

(DP)
$ pÑ ((pÑ K)Ñ K)

This means that we can introduce double negations in intuitionistic logic, although
we can’t do the opposite, i.e. produce ␣␣αÑ α as a theorem for arbitrary α.

These examples raise one important issue — namely, that form matters more
than the particular proposition symbols used in our logical system. Just as we can
derive p Ñ p as a theorem, we can derive q Ñ q as a theorem. In fact, we can
always derive α Ñ α as a theorem for any sentence α. Of course, simply saying
that αÑ α is a theorem without an explicit α doesn’t make sense in our system —
unless we mean it to abbreviate some speciàc string containing pis, it’s not even
a sentence. However, we will adopt this terminology to mean that α Ñ α is a
theorem, whenever you choose some arbitrary but speciàc α.

Returning to the nitty-gritty details of logic, we should note that there are some
speciàc cases where something of the form ␣␣α Ñ α is a theorem. In particular,
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we can prove ␣␣␣αÑ ␣α as a theorem:

(AX)
␣␣␣α,α,␣α $ α

(AX)
␣␣␣α,α,␣α $ ␣α

(MP)
␣␣␣α,α,␣α $ K

(DP)
␣␣␣α,α $ ␣␣α

(AX)
␣␣␣α,α $ ␣␣␣α

(MP)
␣␣␣α,α $ K

(DP)
␣␣␣α $ ␣α

(DP)
$ ␣␣␣αÑ ␣α

So far, the only rule allowable in the implicational fragment thatwe haven’t seen
is PC. We can demonstrate its use by proving α Ñ ((α Ñ K) Ñ β) as a theorem
(“if α is true, then ␣α implies β”):

(AX)
α,αÑ K $ α

(AX)
α,αÑ K $ αÑ K

(MP)
α,αÑ K $ K

(PC)
α,αÑ K $ β

(DP)
α $ (αÑ K)Ñ β

(DP)
$ αÑ ((αÑ K)Ñ β)

More broadly, though, we can generalize to all of our system and prove theo-
rems involving^ and_. In particular, for example, we can derive (α^β)Ñ (α_β):

(AX)
α^ β $ α^ β

(^E1)
α^ β $ α

(_I1)
α^ β $ α_ β

(DP)
$ (α^ β)Ñ (α_ β)

Note that conjunctions and disjunctions are a bit less interesting in intuitionistic
logic than one may expect. In particular, _E is often used in classical logic in con-
junction with the theorem p_␣p. However, p_␣p isn’t an intuitionistic theorem
— if it were, a few deduction steps would show that we would be able to eliminate
double negations in general, which, as we just remarked, isn’t possible. The only
way to get something of the form α_β intuitionistically is to actually prove one of
α or β on its own, so in a sense there are no intuitionistic disjunctions that tell us
anything we didn’t know already, so to speak.

Anyhow, these examples have hopefully illustrated the use of our logical system
to the point that the reader is comfortable and familiar with it. The main hurdle,
apart from working out the details of the deduction rules and their use, is coming
to grips with how intuitionism works. Most readers are likely familiar with classi-
cal logic, but intuitionism differs in some surprisingly subtle ways, some of them
illustrated above. We’ll come back to classical logic in chapter , at which point the
relationship to intuitionism will be made clearer.
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. Semantics

The preceding remarks establish our language and system of deduction, but make
only the most cursory and informal comments on semantics. Such a discussion
would fall outside the scope of the current work, but see [SU] or numerous other
references on the subject for further details.
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The Lambda Calculus

T
 lambda calculus gives us an abstract model for computation and func-
tion evaluation. Historically, it arose fromwork ofAlonzoChurch àrst pub-
lished in  [Chu] and developed further into something more closely

resembling the current theory in a  paper [Chu]. In fact, the lambda calcu-
lus slightly predates the more well-known Turing machine model. There are really
two components to the theory as we shall study it. One is purely a model of com-
putation. We take terms of the lambda calculus, and talk about how they reduce or
evaluate to other lambda terms. This is a rich and fruitful area of study, and un-
derstanding it to some degree is necessary to understanding the material on the
Curry-Howard Isomorphism that follows. However, from our point of view, the
essential component of the theory is the type system, where we talk about how we
can assign types to terms in a way that satisàes certain reasonable constraints. One
can, in fact, consider a “bare,” typeless version of the theory, but the typed lambda
calculus is where the central idea of our subject arises. Just as in logic, we will de-
àne a set of inference rules — if termM has type α in a certain environment, then
term N has type β in another environment, and so on.

We will now begin laying the system out in detail. While this material is sepa-
rate from that in the previous chapter, the two have been written in such a way that
the reader will hopefully notice some of the parallels that our theory of the Curry-
Howard Isomorphism will begin to make more formal in the coming chapters.

. Syntax

To begin, let us lay out the language and syntax within which we will develop the
lambda calculus. The discussion of the basics found here is drawn largely from
[Bar, ch. ]. For our alphabet, we have:

. One variable symbol for each natural number i P N, call them x1, x2, x3, . . .

. The λ operator.

. Parentheses, ( and ), for grouping.
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As with logic, our language will be deàned recursively. To do so, we construct the
set L as follows:

Deànition .. If ∆ is a set of strings over our alphabet, then we say that ∆ P L iff:

. xi P ∆ for all i P N.

. For any i P N andM P ∆, we have (λxiM) P ∆ as well (function abstraction).

. For any M,N P ∆, we have MN P ∆ as well (juxtaposition, i.e. function
application).

Deànition . (Language of the Lambda Calculus). The language Λ of the lambda
calculus is simply:

Λ =
č

∆PL

∆

Terms of the form (λxiM) are meant to be thought of as representing functions;
in this case, a function of xi given by the rule in termM. Juxtaposing two termsM
and N as MN represents the application of the function represented by M to the
argument represented by N.

Some basic examples are in order at this point, just to give a preview of what’s
possible in our language. The following are all strings in Λ:

. (λx1x1)

. x1x2

. (λx1x1)(λx1(λx2x1))

. (λx1x2)

These examples are all rather opaque at the moment, but as our discussion contin-
ues we will ànd out how to interpret them.

As before, it is best to adopt some notational conventions to aid us in work-
ing easily with the language at hand. In particular, when being informal, we will
often write λxi.M in place of (λxiM), as the dot improves legibility by clearly sep-
arating the abstracted variable from the body of the function. In addition, we will
frequently use different letters x,y, . . . as variable names, rather than placing sub-
scripts on x.

. Reduction

Since the lambda calculus is a model for computation, we need some way to actu-
ally move from one term to another. The primary way for getting a new lambda
term from another one is through β-reduction, which will be deàned in this sec-
tion. There are several preliminaries and technicalities that need to be taken care
of àrst. In particular, we need to make formal the way in which the x in a term of
the form λx.M acts as the “argument” of the function speciàed, and how to rea-
son about the subtleties surrounding which occurrences of x are “bound” by the
function abstraction.
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.. Free and Bound Variables

We will work by deàning the free variables of a lambda term recursively. We do
so by specifying a rule for the free variables of a term consisting of just a variable,
then giving rules corresponding to the various ways in which we can build lambda
terms. Essentially, a variable occurs free in a term unless it is captured as the pa-
rameter to a λ expression at some point.

Deànition . (Free Variables). LetM be a lambda term. We shall deàne FV(M),
the free variables ofM, recursively as follows:

. IfM = T1T2, then FV(M) = FV(T1)Y FV(T2).

. IfM = xi, then FV(M) = txiu.

. IfM = λxiT , then FV(M) = FV(T)ztxiu.

Deànition . (Closed Terms and Combinators). IfM is a term such that

FV(M) = ∅

then we say that M is a closed term. A closed term of the form λx.L is called a
combinator.

.. Substitution

Whenwediscuss function application, wewill need away to talk about the result of
substituting a lambda term in for an occurrence of a particular variable in another
lambda term. Suppose we wish to reduce some termMN, which has the following
form:

(λx.L)N

Essentially, we want to take L (which can be thought of as the body or rule of a
function) and substitute instances of x within it with N. For example, if we let
M = (λx.x) and let N = (λy.z), thenMN should just reduce to (λy.z).

However, this is actually a somewhat misleading gloss, in that it fails to account
for the various ways in which a particular variable can occur in a lambda term. For
example, consider the following:

(λx.(λy.x))y

We don’t want to simply go through replacing instances of xwith y. If we followed
the naive approach, we would be left with:

(λy.y)

which represents a sort of identity function— it takes its argument and gives it right
back. However, the intended reading of (λx.(λy.x)) is that it takes an argument and
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gives back a constant function always returning that original argument. In this case,
we should get something of the form:

(λz.y)

The actual variable used in the λ abstraction is, in some sense, unimportant. What
matters is which variables inside the term being abstracted refer back to it, or are
bound to it.

Now, some notation and deànitions. We will use:

M[x – N]

to denote the result of substituting all (appropriate) occurrences of xwith the term
N in the termM. As with FV, we will deàne this concept recursively based on the
form thatM can take.

Deànition . (Substitution). We deàneM[xi – N] recursively as follows:

. IfM = xj, with i ‰ j, thenM[xi – N] =M.

. IfM = xi, thenM[xi – N] = N.

. IfM = T1T2, thenM[xi – N] = T1[xi – N]T2[xi – N].

. IfM = λxiT , thenM[xi – N] =M.

. IfM = λxjT , with i ‰ j and xj R FV(N), thenM[xi – N] = λxjT [xi – N].

. Finally, ifM = λxjT , with i ‰ j and xj P FV(N), then we deàne:

M[xi – N] = (λxkT [xj – xk])[xi – N]

where we choose xk R FV(N)Y FV(T).

Let’s run through the example of using this deànition to determine:

(λy.x)[x – y]

The variable of the abstraction occurs free in the term being substituted, since, by
deànition ., we have y P FV(y). Applying rule , we reduce this to ànding:

(λz.x)[x – y]

We then apply rule  to get our intended result of (λz.y).
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.. TheÑβ Relation

Terms may be β-reduced by taking instances of juxtaposition — terms of the form
MN whereM and N are themselves terms — and removing them by performing
substitution, subject to the following deànitions.

Deànition . (β-redex). A term of the form MN, where M is of the form (λxiL)
for some term L, is called a β-redex.

Deànition . (β Reduction). We deàne the Ñβ relation on lambda terms as the
minimal relation satisfying the following conditions:

. (λxiM)NÑβ M[xi – N]

. WhenMÑβ M
1, we haveMNÑβ M

1N.

. When NÑβ N
1, we haveMNÑβ MN

1 .

. WhenMÑβ M
1, we have (λxiM)Ñβ (λxiM

1).

Deànition . (The ↠β Relation). IfM and N are terms such that:

MÑβ M1 Ñβ M2 Ñβ ¨ ¨ ¨ Ñβ Mk Ñβ N

for some terms M1,M2, . . . ,Mk (including the degenerate cases where k = 0 or
M = N), then we say:

M↠β N

.. Results

Beforemoving on,weneed to brieáy cite some important results aboutβ-reduction.
These will not àgure heavily in our development of the subject, but they are worth
noting. First, we need to informally deàne what it means for two lambda terms to
be “essentially the same.”

Deànition . (Alpha Equivalence). For termsN1 andN2, we say thatN1 „α N2 if
N2 can be obtained by substituting in new bound variables in N1 in such a way as
to avoid capture.

Theorem . (Church-Rosser). Suppose thatM ↠β N1 andM ↠β N2. Then, there
exist some N 1

1 and N
1
2 with N

1
1 „α N

1
2 such that N1 ↠β N

1
1 and N2 ↠β N

1
2. This is

sometimes called the diamond property, after the shape of the diagram frequently used to
illustrate it.

Detailed proofs of this result, which involve many technical details that would
lead us too far astray from our main topic, may be found in [Bar, p. –] and
[SU, p. –].

Deànition . (Normal Form). We say that a termM is in normal form if there is
no N such thatMÑβ N. IfM↠β M

1 andM 1 is in normal form, then we say that
M 1 is the normal form ofM.
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Theorem . (Uniqueness of Normal Form). If N1 and N2 are normal forms ofM,
thenN1 „α N2. Therefore, it makes sense to talk about the normal form of a lambda term.

Proof. Corollary of ..

Note that not all lambda terms have a normal form. For example, consider:

(λf.ff)(λf.ff)

This term has only one beta redex and beta reduces to itself, so it never beta reduces
to a term in normal form.

. Types

What we have described so far is the untyped lambda calculus. However, we wish
to tag our terms with extra information about what “sort” of thing it is that they
represent. As a result, certain terms will be “well-typed,” representing a sensible
combination of data and operations. Others will fail to type correctly due to non-
sensical combinations or uses of different subterms. This idea is easily motivated
by practical considerations in writing and debugging software, but of course it also
has great theoretical repercussions. This aspect of the theory is where the analogy
with logic enters the picture.

.. Notation

To begin, we need to establish how we are going to represent types. In a slightly
abbreviated version of our now-routine process, we lay down some language with
which to work.

Deànition . (Type Expressions). A type expression is a string generated recur-
sively through the following rules:

. Wehave atomic type symbols corresponding to the natural numbers: ι1, ι2, ι3, . . .

. We have a special atomic type symbol, K, representing the empty type, or void
type.

. For type expressions τ and σ, we have a further arrow type (or function type)
(τ Ñ σ). TheÑ symbol is conventionally right associative, so we will write
τÑ σÑ υ for τÑ (σÑ υ).

We will speak almost exclusively in terms of general type expressions τ, σ, and
so on, rarely ever making explicit reference to atomic types. In addition, we will
abbreviate τÑ K as ␣τwhen convenient.

Furthermore, we wish to represent some sort of background environment in
which types are assigned. We need to start out with the types of individual variable
symbols as a given and move from there. We will usually use lowercase Greek
letters to represent types expressions.
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(Var)
Γ , x : τ $ x : τ

Γ $M : K
(Mir)

Γ $ ˚(M) : τ

Γ , x : τ $M : σ
(Abs)

Γ $ (λxM) : (τÑ σ)

Γ $ N : τ,M : (τÑ σ)
(App)

Γ $MN : σ

Figure .: Type Inference Rules

Deànition . (Type Context). By a type context Γ , wemean something of the form:

Γ = tM1 : τ1,M2 : τ2, . . . ,Mn : τnu

where eachMi P Λ and each τi is a type expression. ByMi : γ, we mean thatMi

has type γ.

What a context gives us, then, is a set of associations of variables with types.

In fact, Γ is not unlike a function taking variable symbols to types, so we can deàne
an analog of domain and range for an environment:

Deànition . (Domain and Range of Type Contexts). We use dom(Γ) and rg(Γ)
to denote the following sets:

dom(Γ) = tM |M : τ P Γ for some τu
rg(Γ) = tτ |M : τ P Γ for someMu

.. Type Inference Rules

We now need ways to deduce the overall type of a term from a given environment.
To that end, we introduce a set of inference rules — based on the types of terms in
a known environment, they allow us to deduce the types of further terms built up
from terms that are already types. These rules are given in àgure ., following the
same notation and conventions as in our presentation of logic in section .. If we
can deduce Γ $M : τ, then we say thatM has type τ in the environment Γ .

In detail, the interpretation of the rules is as follows: Var states that, ifwe assume
x has type τ, then we can conclude that x has type τ. Abs tells us that, ifM has type
σ on the assumption that x has type τ, then the resulting lambda abstraction λx.M
has type τÑ σ. Rule App says that, ifN has type τ in our environment andM has
type τÑ σ, then the applicationMN has type σ in the same environment.

Finally, we have our rule Mir, short for “miracle,” which deserves comment.
What this says is that, if we can assign type K to some term M, then there is a

If one wishes to keep the set theory involved as formal and correct as possible, environments
can be deàned as sets of appropriate ordered pairs.
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term denoted by ˚(M) of type τ, for any choice of τ. These terms do not serve
a role in our computational system, because to obtain such a thing we àrst need
to ànd a term occupying the empty type, which is impossible. This sounds rather
mysterious, but the coming presentation of the Curry-Howard Isomorphism and
its generalizations will hopefully make this matter more concrete. The key point
that is worth keeping in mind here when trying to work through the confusion is
that we aren’t saying that there is actually any such thing as a “miracle” lambda
term; we are saying that, were it the case that the empty type was inhabited, then
we could infer whatever we wished about types of terms. If we had liked, the rule
could have stipulated that any term could have been given any type, but having a
distinct way of referring to these hypothetical terms is useful. Again, this is purely
a device in our rules of inference, much the same way that the special proposition
K plays a special role in our system of logic.

.. Consistency of Types Under Reduction

It is important now that we pause and note a basic result about our type system,
namely that it is (in some sense) congruent with our already-established notion of
reduction.

Theorem .. Suppose thatM and N are lambda terms such thatM ↠β N. Then if
Γ $M : τ, it follows that Γ $ N : τ.

A proof of this result may be found in [SU, p. ]. This says that our type
system respects β reduction — that is, continuing on with the reduction of a term
doesn’t alter its type.

. Some Lambda Terms and their Types

It will be instructive to the reader unfamiliar with the subject matter to consider
some basic examples, alongwith someway of interpreting them. These are all com-
monly discussed lambda terms; they are described, among other places, in [SU,
p. ].

Take, for example, the term I ” λx.x, which behaves sort of like an “identity
function.” If we take some arbitrary termM, then we have:

IM = (λx.x)MÑβ M

What do our type inference rules say about this term? Intuitively, it would seem
that I has any type of the form τ Ñ τ, as it takes whatever term is given to it and
hands it right back. This is, indeed, correct, as shown by the following application
of type inference rules:

(Var)
x : τ $ x : τ

(Abs)
$ (λx.x) : (τÑ τ)
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Γ $M : τ
(_I1)

Γ $ inτ_σ
1 M : τ_ σ

Γ $M : σ
(_I2)

Γ $ inτ_σ
2 M : τ_ σ

Γ $M : τ_ σ Γ , xi : τ $ B : δ Γ , xj : σ $ C : δ
(_E)

Γ $ caseM of xñ B or yñ C : δ

Γ $M : τ^ σ
(^E1)

Γ $ π1M : τ

Γ $M : τ^ σ
(^E2)

Γ $ π2M : σ

Γ $M : τ,N : σ
(^I)

Γ $ xM,Ny : τ^ σ

Figure .: Extended Type Inference Rules

Now consider K ” (λx.(λy.x)). Again, thinking in intuitive terms of conven-
tionalmathematical functions,K takes an argument and gives back the correspond-
ing constant function. Take some arbitrary termM, and apply K to it to get:

KM = (λx.(λy.x))MÑβ λy.M

As far as types go,K takes an argument of some type, and then gives back a function
that takes any given input and hands back something of the type thatKwas initially
given. We formalize this by the application of our type inference rules as follows:

(Var)
x : τ,y : σ $ x : τ

(Abs)
x : τ $ (λy.x) : (σÑ τ)

(Abs)
$ (λx.(λy.x)) : (τÑ (σÑ τ))

As it turns out, not all terms in Λ can be consistently assigned a type. Consider
λx.xx. The term xxwould need to be assigned a type through rule App. Thismeans
that we must have Γ $ x : τÑ σ for some type expressions τ and σ. However, we
would also need to have Γ $ x : τ for the very same value of τ. This is certainly an
odd example, although it should be noted that self-application does have its place
in the untyped lambda calculus (i.e. it would make perfect sense to have λx.xx as
a subterm in some larger untyped term that β-reduced to another term).

. Extended Type System

We will now introduce some more sophisticated types into our system, along with
corresponding type inference rules. In particular, we will deàne pair and variant
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types. We will denote the pair and variant types formed from τ and σ as τ^ σ and
τ _ σ, respectively. The pair formed from termsM and N is itself a new lambda
term, which is written as xM,Ny. We introduce two new combinators, π1 and π2,
called projections. These have associated reduction rules, as follows:

π1xM,Ny Ñχ M

π2xM,Ny Ñχ N

We write the associated type for a pair of terms of type τ and σ as τˆ σ.
Variants, on the other hand, are things that can be of one type or another. The

variant type of types τ and σ is designated τ _ σ. For all pairs of types τ and σ,
we get a new pair of combinators, inτ_σ

1 and inτ_σ
2 . The intuitive gloss on these is

that they take a term and “lift” it to the variant containing it — that is, they take
something of type τ to the corresponding term that’s either an τ or a σ. Then, we
can “pull apart” a variant with a case term, which has a new reduction rule of its
own:

case inτ_σ
1 M of xñ B or yñ CÑχ B[x – M]

case inτ_σ
2 M of xñ B or yñ CÑχ C[y – M]

Deànition .. We will refer to our original system as the simply-typed lambda cal-
culus. This new system, with added terms and types, will be referred to as the
extended typed lambda calculus.

These terms and the new special combinators introduced to handle them make
it possible to represent many computations in the lambda calculus in a way that
looks more natural when compared to typical programming languages. That said,
our ultimate motivation in introducing these types is to provide a lambda calculus
analog of conjunction and disjunction, as will be seen in the next chapter, . We
will extend the lambda calculus yet again in chapter , albeit in a way that makes
it possible do away with pair and variant types as primitives.

A word of warning: this notation is rather nonstandard, and employed solely for the purpose
of making the Curry-Howard Isomorphism easier to present. Typically, the pair is written as τˆ σ

and the variant is written as τ+ σ, as in [Pie, p. ].



Chapter 

The Curry-Howard Isomorphism

N
 that we have established the necessary prerequisites from logic and the
lambda calculus, wemay begin to explore the Curry-Howard Isomorphism
itself. The preceding chapters were presented in such a way that the reader

hopefully has some intuitive awareness of the connection already. Figures . and
. have clear similarities — see àgure . — and our goal is now to formalize this
connection.

. The Isomorphism

We shall now state and prove the central theorem of our subject.

Theorem . (The Curry-Howard Isomorphism). In a type context Γ , there is a lambda
termM in the simply typed lambda calculus such that Γ $ M : ϕ iff rg(Γ) $ ϕ in the
implicational fragment of intuitionistic logic with falsehood.

Proof. This result sounds like it should, in some sense, be simple, and it is tempting
to invite the reader to just inspect àgure . and think about it. However, we can
prove this theorem in an interestingway that illuminates what’s going on and hints
at an algorithm for producing terms corresponding to proofs. We will show the
direction going from logic to the lambda calculus, although the other direction can
be àlled in with an isomorphic set of deànitions and arguments.

We will proceed by induction on proof trees. First, we need to expand a little
bit on our vocabulary with regards to proof tree. We will use T1,T2, . . . for trees
andA,B,C, . . . for derivation expressions (possibly including the empty derivation
expression).

Deànition . (Depth of a Tree). We deàne the depth of a tree recursively in the
natural way. A tree of the form:

A

B
has depth 1, while a tree of the form:

T1 T2 ¨ ¨ ¨ Tn

A
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(AX)
Γ ,α $ α

Γ $ K
(PC)

Γ $ α

Γ ,α $ β
(DP)

Γ $ αÑ β

Γ $ α,αÑ β
(MP)

Γ $ β

(a) Implicational Fragment of Intuitionistic Logic

(Var)
Γ , x : τ $ x : τ

Γ $M : K
(Mir)

Γ $ ˚(M) : τ

Γ , x : τ $M : σ
(Abs)

Γ $ (λxM) : (τÑ σ)

Γ $ N : τ,M : (τÑ σ)
(App)

Γ $MN : σ

(b) Simply-Typed Lambda Calculus Type Inference Rules

Figure .: Natural Deduction and Type Inference Rules Together

has depth 1+ max
1ďiďn

tdepth of Tiu.

Deànition . (Minimal Depth Proof). LetT be a tree representing a proof of Γ $ α.
Then we say that T is a minimal depth proof of Γ $ α if there does not exist any tree
T 1 proving Γ $ α with depth T 1 ă depth T. We say that the depth of a minimal
depth proof tree of Γ $ α is the minimal proof depth of that derivation expression.

Nowwe canproceed byperforming induction onminimal proof depth of deriva-
tion expressions. As our base case, consider those derivation expressionswithmin-
imal proof depth 1. These will have proof trees of the form:

(AX)
α1,α2, . . . ,αn $ αi

Then, we just note that the lambda term xi can be typed as follows:

(Var)
x1 : α1, x2 : α2, . . . , xn : αn $ xi : αi

Now, suppose that the result holds true for all provable derivation expressions
with a minimal proof depth of n or less. Let rg(Γ) $ α be a derivation expression

It’s worth pointing out that, while this deànition may sound ominous to those of the construc-
tivist persuasion, nothing àshy is going on here. The set of depths of proof trees of a given deriva-
tion expression is a subset of the natural numbers, so it certainly has a least element by conventional
mathematical reasoning. However, one could also argue this by showing that, if we know that we
can prove Γ $ α, then we can actually compute a minimum depth proof easily by performing a
breadth-àrst search through proofs.
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with minimal proof depth n + 1, and let T be a minimal proof tree of rg(Γ) $ α.
Now, we work by cases. If T is of the form:

T 1

(DP)
rg(Γ) $ βÑ γ

where T 1 is a proof tree for rg(Γ),β $ γ, then we take a lambda term of the form
(λxi.M), whereM has type γ in a type context Γ , xi : β. Such a term is guaranteed
to exist by induction, as rg(Γ),β $ γ has minimal proof depth at most n. We then
type this term as follows:

Γ , xi : α $M : γ
(Abs)

Γ $ (λxi.M) : (βÑ γ)

Now suppose that T is of the form:

T 1 T2

(MP)
rg(Γ) $ γ

where T 1 is a proof tree of rg(Γ) $ β and T2 is a proof tree of rg(Γ) $ β Ñ γ.
Then, by induction, we introduce lambda termsM andN such that Γ $M : β and
Γ $ N : βÑ γ and then type the term NM as follows:

Γ $M : β Γ $ N : (βÑ γ)
(App)

Γ $ NM : γ

Finally, it may be the case that T is of the form:

T 1

(PC)
rg(Γ) $ α

where T 1 is a proof tree of rg(Γ) $ K. Then, by induction, we have some lambda
term M such that Γ $ M : K, and then produce the term ˚(M) and type it as
follows:

Γ $M : K
(Mir)

Γ $ ˚(M) : α

This exhausts the possible cases, and shows thatwheneverwe can prove rg(Γ) $
α in the implicational fragment of intuitionistic logic with falsehood, we can ànd a
termM such that Γ $M : α. As previously noted, the reverse direction holds by a
similar argument by cases.

Note that our proof involved recursively building a lambda term whose type
corresponds to the propositionwewere starting from, andwhose type can be deter-
mined through a series of type inference rules corresponding to the steps involved
in proving the proposition. We can think of lambda terms as encoding proofs, type-
checking a term as corresponding to verifying the correctness of a proof.
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. Examples

At this point, onemaywish to inspect actual theorems of intuitionistic logic and see
the lambda terms corresponding to their proofs. For example, take p Ñ (q Ñ p).
We may prove this theorem as follows:

(AX)
p,q $ p

(DP)
p $ qÑ p

(DP)
$ pÑ (qÑ p)

Now consider the K combinator, introduced in section .:

K ” (λx.(λy.x))

From our intuitive grasp of the lambda calculus and type systems, we can see that
this can be consistently assigned any type of the form αÑ (βÑ α). Wemay verify
this by performing the following deduction using our type inference rules:

(Var)
x : α,y : β $ x : α

(Abs)
x : α $ (λy.x) : (βÑ α)

(Abs)
$ (λx.(λy.x)) : (αÑ (βÑ α))

Note that the structure of our program mimics the structure of our proof, as each
type inference rule corresponds to one of the ways in which we may build lambda
terms.

Now for a slightly more complex (and important) case. Any sentence of the
form

pÑ ((pÑ q)Ñ q)

is a theorem of intuitionistic logic. In particular,

pÑ ((pÑ K)Ñ K)

is a theorem; note that this can be abbreviated as p Ñ ␣␣p. What, then, is the
Curry-Howard interpretation of this result? Consider the lambda term (λx.(λy.yx)).
We may infer its type as follows:

(Var)
x : α,y : (αÑ β) $ x : α

(Var)
x : α,y : (αÑ β) $ y : (αÑ β)

(App)
x : α,y : (αÑ β) $ yx : β

(Abs)
x : α $ (λy.yx) : ((αÑ β)Ñ β)

(Abs)
$ (λx.(λy.yx)) : (αÑ ((αÑ β)Ñ β))
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Finally, let’s look at a simple example that will illustrate an important point.
Consider the term λy.Iy. We can assign this term the type αÑ α, as follows:

(Var)
y : α $ y : α

(Var)
x : α,y : α $ x : α

(Abs)
y : α $ (λx.x) : αÑ α

(App)
y : α $ (λx.x)y : α

(Abs)
$ (λy.(λx.x)y) : αÑ α

However, the term I itself can also be assigned the type αÑ α through the follow-
ing steps:

(Var)
x : α $ x : α

(Abs)
$ (λx.x) : αÑ α

These two terms encode two different proofs of αÑ α, although the second one is
certainly, in some sense,more direct. We can formalize this by noting that λy.IyÑβ I,
so I is actually the normal form of the àrst term that we looked at. The correspon-
dence between proofs and lambda terms allows us to talk about normalizing proofs.
Exploring this idea is one possible direction to go with this subject matter, and the
idea of normalization is important in proof theory.

. The Full Curry-Howard Isomorphism

Wemay generalize our isomorphism beyond just the implicational fragment using
the extended type system that we developed at the end of the previous chapter.

Theorem . (Full Curry-Howard Isomorphism). In a type context Γ , there is a lambda
term M in the extended typed lambda calculus such that Γ $ M : ϕ iff rg(Γ) $ ϕ in
intuitionistic logic.

Theproof of this result just involves generalizing the proof of theorem., adding
cases for our rules involving conjunction and disjunction.

. Some Remarks

If it feels like very little has happened in this chapter, it’s because, in some sense,
that’s the case; the beauty of theCurry-Howard Isomorphism is its obviousness and
simplicity. However, noting a simple similarity between diagrams does not make
a full understanding of the subject. The interpretation of computation in terms of
logic and vice versa is very subtle and takes time to understand fully. It has been
my goal to help illuminate thematter by providing a proof of theorem . that relies
on an actual algorithm for determining the lambda term corresponding to a given
proof. The examples presented are intended to be helpful, but going back to puzzle
over them further (or to investigate examples of your own) would almost certainly
be helpful.





Chapter 

Classical Logic and Translation

W
 are now ready to move beyond the case of intuitionistic logic alone and
consider ways of generalizing the Curry-Howard Isomorphism to other
systems of logic. Themost obvious candidate would be our usual standard

baseline system of logic, namely classical logic.
As it turns out, classical and intuitionistic logic are related in a number of sur-

prising ways. Historically, the development and adoption of intuitionistic logic
was motivated by the perceived failings of classical logic, either on purely philo-
sophical grounds or in terms of avoiding contradiction in the useful mathematical
theories. However, intuitionism is not as isolated from the woes of classical logic
as its early proponents may have liked. In particular, given a proof of a contradic-
tion in Peano (classical) arithmetic, one may apply a translation to produce a proof
of a contradiction in Heyting (intuitionistic) arithmetic [FO, p. ]. If classical
arithmetic is in trouble in this regard, then intuitionistic arithmetic is no better off.

While this is arguably a blow to the philosophical advocate of intuitionism, the
translation by which this is accomplished is a great upshot to those of us who wish
to study various logical systems and their relations. There are actually several such
translations — see [FO] for an overview. However, we will primarily be con-
cerned with the àrst such translation to be discovered, that of Kolmogorov.

. Classical Logic

There are several equivalent ways in which our system of natural deduction given
in àgure . can be extended to give classical logic. Our approach will be to add a
single new rule, DN, which allows for double negation elimination. The resulting
set of natural deduction rules is shown in àgure ..

This additional rule is simple, but it allows us to prove a lot of theorems clas-
sically that can’t be shown intuitionistically. This rule will be most familiar to the
working mathematician for the following application: suppose that we can derive
Γ ,␣α $ K (i.e. ␣α implies a contradiction). Then, we want to be able to somehow
derive Γ $ α. To that end, we can perform DP in order to get Γ $ (αÑ K)Ñ K or,
in abbreviated form, Γ $ ␣␣α. Then, we just perform DN to get Γ $ α, allowing
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(AX)
Γ ,α $ α

Γ $ K
(PC)

Γ $ α

Γ $ ␣␣α
(DN)

Γ $ α

Γ ,α $ β
(DP)

Γ $ αÑ β

Γ $ α,αÑ β
(MP)

Γ $ β

Γ $ α
(_I1)

Γ $ α_ β

Γ $ β
(_I2)

Γ $ α_ β

Γ $ α_ β Γ ,α $ δ Γ ,β $ δ
(_E)

Γ $ δ

Γ $ α^ β
(^E1)

Γ $ α

Γ $ α^ β
(^E2)

Γ $ β

Γ $ α,β
(^I)

Γ $ α^ β

Figure .: Natural Deduction Schemes for Classical Logic

us to perform something like a conventional proof by contradiction.
A word on notation: often, we will want to disambiguate between classical and

intuitionistic logic when discussing them side-by-side. If it isn’t clear from the con-
text, we will use $I for judgments deduced in intuitionistic logic, and $C for judg-
ments in classical logic.

. The Kolmogorov Double Negation Translation

The Kolmogorov Double Negation translation gives us a way of translating sen-
tences of logic into new sentences, in such a way that the new sentence is related
to the original in an interesting way. Following [SU, p. ], we may recursively
deàne an operator Kwhich performs this translation.

Deànition . (Kolmogorov Translation). Let α be a sentence consisting solely of
an atomic proposition, and let β and γ be any sentences. Then, deàne:

K(α) = ␣␣α

K(βÑ γ) = ␣␣(K(β)Ñ K(γ))

K(β^ γ) = ␣␣(K(β)^ K(γ))

K(β_ γ) = ␣␣(K(β)_ K(γ))

In addition to looking at the whole translation, we could restrict ourselves to
just the implicational fragment. However, the interesting results in question hold
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generally, so it is best to move on and simply note that we could consider a simpler
version of K if we so desired.

Wemay now explore howK relates classical and intuitionistic logic, àrst looking
at the classical relation between a sentence and its image under K.

Theorem .. Let ϕ be a sentence. Then ϕ $C K(ϕ) and K(ϕ) $C ϕ.

Proof. By induction on depth of nested connectives in a sentence. The result clearly
holds if ϕ is a sentence consisting solely of an atomic proposition, by rules DN and
PC.

Now, suppose we have some sentence ϕ that does not take the form pi for any
i P N. Then, we either have ϕ = α Ñ β, ϕ = α _ β, or ϕ = α ^ β, where α and
β are sentences with a strictly lower depth of connective nesting. By induction, we
have α $C K(α), K(α) $C α, β $C K(β), and K(β) $C β.

Step back for a second and note that, in general, if α and α 1 are classically equiv-
alent and β and β 1 are classically equivalent, we have:

αÑ β $C α
1 Ñ β 1

α_ β $C α
1 _ β 1

α^ β $C α
1 ^ β 1

Consider the case of the Ñ connective. Since α and α 1 are classically equivalent,
we can derive $C α Ñ α 1 and $ α 1 Ñ α, along with the analogous results for β
and β 1. The proof tree showing the end result can be seen in àgure . on page .

The corresponding proofs for_ and^ are slightly different, taking advantage of
the introduction and elimination rules for those connectives, but follow in a similar
manner.

We may now complete the proof by using the aforementioned facts, double
negation introduction and elimination, and our inductive hypothesis to show that
ϕ $C K(ϕ) and K(ϕ) $C ϕ. Suppose that ϕ is of the form αÑ β. By our inductive
hypothesis, we know that α and K(α) are classically equivalent, as are β and K(β).
By the above remarks, this means that we can derive α Ñ β $ K(α) Ñ K(β). By
our remark in section ., we can go through some steps to perform double nega-
tion introduction and get α Ñ β $ ␣␣(K(α) Ñ K(β)). However, by deànition,
␣␣(K(α)Ñ K(β)) = K(αÑ β), so we have αÑ β $ K(αÑ β).

Similarly, we can consider the other direction. If we assume K(α Ñ β), we can
use DN to get K(α) Ñ K(β), then apply our inductive hypothesis and the above
remarks to get αÑ β.

The cases where ϕ takes the form of a conjunction or disjunction follow simi-
larly.

In order to show how the Kolmogorov Translation gives us a relationship be-
tween classical and intuitionistic logic, we àrst need to note some properties of the
translation itself within the intuitionistic context.

Lemma .. The expressions that follow are all derivable in intuitionistic logic; items –,
and other pertinent intuitionistic tautologies, can be found in [FO, p. ].
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. K(α)Ñ K(β) $I K(αÑ β)

. K(αÑ β) $I K(α)Ñ K(β)

. K(α)_ K(β) $I K(α_ β)

. K(α)^ K(β) $I K(α^ β)

. K(α^ β) $I K(α)^ K(β)

. (αÑ ␣β)Ñ (␣␣αÑ ␣β)

Proof. Results , , and  all follow fairly easily from the fact that we can perform
double negation introduction in intuitionistic logic. We prove  explicitly by giving
a tree in àgure . on page ; this shows that a derivation expression of the relevant
form is derivable intuitionistically.

The one result that stands out as being unlike the others is . This is a sort of
fussy technical detail, but we will need to deploy it while proving our next major
result. We give the proof tree here, where we deàne Γ = tα Ñ ␣β,␣␣α,β,αu in
order to save space:

(AX)
αÑ ␣β,␣␣α,β $ ␣␣α

(AX)
Γ $ β

(AX)
Γ $ α

(AX)
Γ $ αÑ ␣β

(MP)
Γ $ ␣β

Γ $ K
(DP)

αÑ ␣β,␣␣α,β $ ␣α
(MP)

αÑ ␣β,␣␣α,β $ K
(DP)

αÑ ␣β,␣␣α $ ␣β
(DP)

αÑ ␣β $ ␣␣αÑ ␣β
(DP)

$ (αÑ ␣β)Ñ (␣␣αÑ ␣β)

We leave the others for veriàcation — the reader will hopefully be understand-
ing of the reluctance to explicitly create anymore proof trees of thatmagnitude!

Theorem .. Let ϕ be a sentence. Then $I K(ϕ) iff $C ϕ.

Proof. Suppose $I K(ϕ). Since everything provable intuitionistically is provable
classically, we have $C K(ϕ), which in turn gives us $C ϕ by theorem ..

Now suppose that$C ϕ. We will give a recursive procedure for turning a proof
of $C ϕ into a proof of $I K(ϕ). To formalize this, begin by letting T be a proof
tree for $C ϕ. Now, we argue by cases of the root of T. On the one hand, it could
be of the form:

Γ ,α $ β
(DP)

Γ $ αÑ β
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By induction, we have K(Γ),K(α) $ K(β), so we can apply lemma . item  and
replace the root with:

K(Γ),K(α) $ K(β)
(DP)

K(Γ) $ K(α)Ñ K(β)

...

K(Γ) $ K(αÑ β)

where the dots represent the necessary deduction steps that we’d have to àll in to
show the relevant result from lemma . part .

The root of T could also be of the form:

Γ $ α,αÑ β
(MP)

Γ $ β

Then, by induction, we can assume K(Γ) $ K(α),K(α Ñ β). Again, we can apply
lemma . and replace the root of the tree as follows:

K(Γ) $ K(α),K(αÑ β)

...

K(Γ) $ K(α),K(α)Ñ K(β)
(MP)

K(Γ) $ K(αÑ β)

This covers the rules for introducing and eliminating the Ñ connective — the
cases for _ and ^ follow similarly from lemma .. The one tricky case is that of
_E, since _ doesn’t behave quite like ^. Suppose that the root of T takes the form:

Γ $ α_ β Γ ,α $ δ Γ ,β $ δ
(_E)

Γ $ δ

Now, by induction, we may assume that all of the following hold:

K(Γ) $ K(α_ β)

K(Γ),K(α) $ K(δ)

K(Γ),K(β) $ K(δ)

This means that we can also use _E to derive:

K(Γ),K(α)_ K(β) $ K(δ)

by application of our induction hypotheses. Further reworking and application of
lemma . item  (noting that K(δ) has the form ␣γ for some γ) gives us:

K(Γ) $ ␣␣(K(α)_ K(β))Ñ K(δ)

which, by rewriting ␣␣(K(α)_ K(β)) as K(α_ β) and an application of MP, gives
us the result we are looking for.
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This leaves applications of AX, PC, and DN to take care of. AX is trivial. For
PC, suppose that T has a root of the form:

Γ $ K
(PC)

Γ $ α

Then, by induction, we may assume K(Γ) $ K(K). Now just note that K(K) =
((K Ñ K) Ñ K). Furthermore, we have $I K Ñ K, so we can derive K(K) $I K.
Perform this derivation, and then just replace the root of T with:

K(Γ) $ K
(PC)

K(Γ) $ K(α)

Instances of DN are handled as another special case. Suppose the root of T is of
the form:

Γ $ ␣␣α
(DN)

Γ $ α

Then, by induction, we have:

K(Γ) $ K(␣␣α)

which, by selective expansion of some abbreviations and deànitions, gives us:

K(␣␣α) = K((αÑ K)Ñ K)

$I K(αÑ K)Ñ K(K)

By repeated application of lemma . item  and other facts:

$I K(α)Ñ K(K)Ñ K(K)

Since K and K(K) are intuitionistically equivalent, we may perform the following
derivation (the details of which are omitted):

$I K(α)Ñ K Ñ K

= ␣␣K(α)

Now, just note that ␣␣K(α) is of the form ␣␣␣β for some sentence β. In general,
we have$I ␣␣␣βÑ ␣β by one of our examples from section ., sowe can derive
␣␣K(α) $I K(α). After plugging in all of the necessary work, we can replace the
root of T with the ànal step in our derivation of K(Γ) $ K(α).

The covers the last of the possible cases, completing the proof.

. Inter-Deànability of Connectives

One distinguishing feature of classical logic is that we can deàne conjunction and
disjunction in terms of the conditional and negation.
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Deànition .. Wemay take our language for our formal system of logic andmod-
ify the alphabet by removing _ and ^, re-introducing them in the form of abbrevi-
ations as follows:

. We introduce p_ q as an abbreviation for ␣(␣pÑ ␣q).

. Similarly, we use p^ q as an abbreviation for ␣(pÑ ␣q).

Now we just need to check that conjunction and disjunction behave properly
when deàned as such.

Theorem .. The following are all theorems of classical logic with our newly redeàned
notions of conjunction and disjunction:

. pÑ p_ q

. qÑ p_ q

. p^ qÑ p

. p^ qÑ q

Proof. We will prove  and leave the rest for routine veriàcation by the reader. Re-
moving our abbreviations, we see that we are trying to prove p Ñ ((p Ñ K) Ñ
((qÑ K)Ñ K)). We may do this with the following tree:

(AX)
p,pÑ K $ p

(AX)
p,pÑ K $ pÑ K

(MP)
p,pÑ K $ K

(PC)
p,pÑ K $ (qÑ K)Ñ K

(DP)
p $ (pÑ K)Ñ (qÑ K)Ñ K

(DP)
$ pÑ ((pÑ K)Ñ (qÑ K)Ñ K)

The other proofs proceed in a similar fashion.





Chapter 

Continuations and Continuation
Passing Style

A
 this point, the reader (hopefully!) expects some computational analog
to the discussion in the previous chapter. We want something that is to
classical logic as the lambda calculus is to intuitionistic logic. There are

two levels on which we hope to make a correspondence. For starters, we wish to
establish a connection like the Curry-Howard Isomorphism between classical logic
and a related notion of computation. Second, we wish to ànd a computational
meaning for the Kolmogorov Double Negation Translation, i.e. a relation between
our original lambda calculus and whatever new system we develop that mirrors
the translation between systems of logic. As it turns out, we can deliver on both
fronts by introducing a notion of control operators based on continuations.

. Motivation: Control Flow

Ideally, our augmented version of the lambda calculus will have some relatively
intuitive computational interpretation. As it turns out, we can easily motivate the
additionswe are going tomakewith some very concrete examples. The lambda cal-
culus on its own is sufàciently powerful, but it lacks some key features that would
allow it to emulate idiomatic computer code. Consider, for example, situations in
which we may wish to explicitly move execution from one point in our code to
another. Overuse of such operators (in the case of unrestricted “goto” statements
found in some early languages) quickly leads to spaghetti code that is nigh im-
possible to reason about, but there are situations in which some form of “jump”
may in fact be tasteful. One such example may be if we wish to raise and handle
exceptions in our code. There may be instances where there is some particular oc-
currence, such as a division by zero, that may occur within a complex computation.
In such a case, we may wish to immediately abort the current computation and re-
turn control to the part of the program that invoked our code so that the condition
can be handled in some appropriate way.
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( define ( f throw )
( l e t ( ( fst ( get-number-from-user ) )

( snd ( get-number-from-user ) ) )
( if ( eq? snd )

( throw ’ div-by-zero-exception )
(/ fst snd ) ) ) )

( call/cc f )

Listing .: Example of Continuation-Based Exception Handling

.. Example: Scheme

One instantiation of the sort of control áow we are discussing can be found in
the programming language Scheme [Spe]. Suppose that we wish to implement
something akin to the aforementioned exception handling mechanism. An exam-
ple of such usage can be seen in listing ..

This hypothetical example takes two user-supplied numbers and divides them,
handling the casewhere the divisormay be zero. The function f being deàned takes
an argument called throw. When the built-in function call/cc is called on f, the
function f itself is called and supplied with another function as argument. This
other function is a device called a continuation that encapsulates the current control
state of the program, and returns to its previous position when called, abandoning
the current áow of execution. The argument supplied to the continuation when it
is called is then returned by call/cc. If the call to f terminates normally, then the
result obtained from that evaluation is returned by call/cc instead. So, if our user
dutifully gives two numbers, the ànal S-expression in our programwill evaluate to
their quotient. If, on the other hand, the divisor is zero, wewill get back the symbol
'div-by-zero-exception.

In addition to providing a means by which usual ideas of control áow can be
expressed in functional languages (as discussed in [Wad]), continuations play a
larger role. In particular, they provide a means by which such languages can be
more readily compiled into conventional machine language or bytecode. See, for
example, [App].

There is one important problem with our example, namely that Scheme lacks a
type system of the sophistication that we need. In particular, functions don’t have
types, which leaves us without a way of forming a Curry-Howard correspondence.
We can, however, discuss how we might assign call/cc a type in a hypothetical
language like Scheme. In fact, there is a typed variant of the Scheme dialect Racket.
Wemay look at how it handles thematter; an interactive session at the Racket REPL
is shown in listing ..

The type of call/cc reported back is that of a function whose argument is itself
a function and whose return type is something corresponding roughly to an α_ β

variant type. The function that call/cc takes has some α to Nothing (roughly anal-
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> racke t ´I typed/racke t
Welcome to Racket v .  .  .
´> ( : pr int´type c a l l /cc )
( Al l ( a b ) ( ( ( a ´> Nothing ) ´> b ) ´> (U a b ) ) )

Listing .: Typed Racket Handling call/cc

ogous to our K) function (the continuation) as its argument and gives back some-
thing of type β. Let’s dissect this a little bit. The continuation is something of
type α Ñ K, and since it returns type K, it never ànishes evaluating if called; in-
stead the áow of the program is altered. An invocation of the continuation with
an argument causes evaluation of the continuation-using function to stop and the
argument that it was called with to be given back by call/cc. The call/cc func-
tion then returns either the value that the continuation was invoked with or, if the
continuation wasn’t called, the result of the evaluation of the function call/cc was
given.

. Control Operators

Wewill now develop an extension of the lambda calculus that incorporates the fea-
tures we need, roughly corresponding to the call/cc mechanism in Scheme out-
lined above. The original development of such a system and its relation to classical
logic is due to Grifàn [Gri]. Various such systems have been developed and for-
malized since Grifàn published his paper, but it will be most convenient for us to
follow the system developed in [SU, p. –].

The one new symbol that we add to the lambda calculus is ∆. We extend the
language Λ as a whole to a new language Λ∆ by saying that, for any termM, we
also have a term (∆xiM).

Deànition . (∆ Reduction). We deàne theÑ∆ relation to be the minimal relation
on Λ∆ terms satisfying:

. (∆x.M)NÑ∆ (∆z.M[x – (λy.z(yN))])

. (∆x.xM)Ñ∆ Mwhenever x R FV(M)

. (∆x.x(∆y.M))Ñ∆ (∆z.M[x – z][y – z])

We also need to extend the Ñβ relation slightly. Let our extended Ñβ be the
minimal relation satisfying all of the properties outlined in deànition ., in ad-
dition to the stipulation that (∆xiM) Ñβ (∆xiN) whenever M Ñβ N. This just
means that we can β-reduce within ∆ terms in the usual manner, just as we can
β-reduce within λ terms.

Finally, we deàne a rule for typing ∆ terms, shown in àgure .. This extends
the type inference rules given in àgure .. Note that this allows us to perform the
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Γ , xi : τÑ K $M : K
(Ctrl)

Γ $ (∆xiM) : τ

Figure .: Type Inference Rule for ∆ Terms

analog of double negation elimination in our type system. Suppose we have some
term N with N : (τ Ñ K) Ñ K. Then, under the assumption that there is some x
with x : (τ Ñ K), we can get Nx : K. Therefore, we may conclude that ∆x.Nx : τ.
Note that this ànal termdoesn’t directly∆ reduce to anything, butMxwillβ reduce
in such a way that we eventually get something of the form xN, in which case our
∆ reduction rules will be applicable. This allows us to extend the Curry-Howard
Isomorphism in theorem ..

The introduction of ∆ is meant to provide our calculus with something cor-
responding to call/cc. In order to clarify and motivate what’s going on, we can
provide aΛ∆ analog to the earlier example given in Scheme. Suppose that we have
some EInt (extended integer) typewhose values are either normal integers or a spe-
cial ! value, which we’ll use to indicate an exception. Furthermore, suppose that
we have a div function for integer division, a term eq0 that tests whether an EInt is
0, and an if term. These can all be constructed in our calculus from the ground up,
but for the purposes of this example we will treat them as given. Now, consider
the following term:

f ” λm.λn.∆t.t(if (eq0n)(∆x.t !)(divmn))

Suppose that we give f two values, i1 and i2, by taking the term fi1i2 and reducing
it. In the case where i2 is nonzero, reduction should proceed normally and give us
the value of i1 divided by i2:

fi1i2 Ñβ ∆t.t(if (eq0 i2)(∆x.t !)(div i1 i2))
↠β ∆t.t(div i1 i2)

By ∆ reduction rule :

Ñ∆ (div i1 i2)

On the other hand, if i2 is zero, the reduction is different:

fi1i2 Ñ ∆t.t(if (eq0 i2)(∆x.t !)(div i1 i2))
↠β ∆t.t(∆x.t !)

By ∆ reduction rule :

Ñ∆ ∆z.z !

By ∆ reduction rule :

Ñ∆ !
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. TheCurry-Howard Isomorphism forClassical Logic

Our newly deàned calculus with the ∆ operator allows us to give a Curry-Howard
Isomorphism for classical logic.

Theorem . (The Curry-Howard Isomorphism for Classical Logic). In a type con-
text Γ , there is a Λ∆ termM such that Γ $M : ϕ iff rg(Γ) $C ϕ.

Proof. All that we need to do is slightly generalize theorem .. As with our proof
of theorem ., we will show that rg(Γ) $C ϕ implies the existence of a Λ∆ termM

such that Γ $M : ϕ.
Let T be a minimal depth proof tree of rg(Γ) $C ϕ. The one new case that we

need to consider is that where the root of T is of the form:

T 1

(DN)
rg(Γ) $ ϕ

where T 1 is a proof tree of rg(Γ) $ ␣␣ϕ. By induction, we have some termM such
that Γ $ M : ((ϕ Ñ K) Ñ K). SinceM has a function type, it must be of the form
λx.N, with the type inference going as follows:

Γ , x : (ϕÑ K) $ N : K
(Abs)

Γ $ (λx.N) : ((ϕÑ K)Ñ K)

Then, we can type the term ∆x.N as follows:

Γ , x : ϕÑ K $ N : K

Γ $ (∆x.N) : ϕ

which gives us a Λ∆ term of type ϕ in Γ , as desired.

. Continuation Passing Style

As it turns out, the original lambda calculus can express anything that our newly-
enhanced system can. Not only is that the case, but there is an easy recursive algo-
rithm for turning a term in our new system with instances of ∆ into a pure lambda
term.

Deànition . (Continuation Passing Style Translation). The continuation passing
style translation, or CPS translation for short, t, is an operator that takes Λ∆ terms to
pure Λ terms, deàned recursively as follows:

. IfM = xi, when t(M) = (λk.xik).

. IfM = (λxiN), then t(M) = λk.k(λxi.t(N)).

. If L =MN, then t(L) = λk.t(M)(λx.xt(N)k).

. IfM = (∆xi.M), then t(M) = λk.(λxi.t(M))(λa.a(λb.λc.c(bk)))(λz.z).
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.. Type of Continuation Passing Style Translations

As it turns out, the type of a termM and the type of t(M) are related by the Kol-
mogorov Translation.

Theorem .. Suppose that Γ $M : τ in the Λ∆ calculus. Then K(Γ) $ t(M) : K(τ) in
the simply typed lambda calculus. HereK(Γ) is to be understood as the type context derived
from Γ by taking each type assignment of the form N : τ and replacing it with N : K(τ).

Proving this result in its entirety would be laborious and just result in getting
bogged down with technical details. However, we may illustrate the procedure
with a speciàc example.

Suppose that we have a term of the formMN, where we have an environment
Γ with M : σ Ñ τ and N : σ, so that MN has type τ overall. Now we need to
take t(MN), as given in the deànition above, and type it in the environment K(Γ),
where we have t(M) : ␣␣(␣␣σ Ñ ␣␣τ) and t(N) : ␣␣σ. However, we have
already done this! Well, not quite… but àgure . with the very last step removed
is the logical analog of the type inferences for t(MN) under the Curry-Howard
Isomorphism. Sure enough, we get that K(Γ) $ t(MN) : ␣␣β.

This is a huge upshot. All we need to do is see that the CPS translation can be
viewed not only as a translation between terms, but also as a translation between
proofs. Then, if a term L encodes a proof of ϕ, we will have t(L) encoding a proof
of K(ϕ). Doing the proof in full detail would simply involve conàrming that t
performs exactly the transformation on proofs that we developed in order to prove
theorem ..

. Deànability of Pair and Variant Types

Just as classical logic allowed us to deàne conjunctions and disjunctions in terms
of negation and the material conditional in section ., the addition of a control
operator to the lambda calculus allows us to deàne pairs and variants in simpler
terms.

Deànition .. We may remove pair and variant terms from the lambda calculus,
replacing them as abbreviations of the following, as described in [SU, p. ]:

. We write λx.xPQ in place of xP,Qy.

. We write ∆k.M(λx1.λx2.kxi) for πi(M).

. We write λx1.λx2.xiM for ini(M).

. We write ∆k.M(λx.kB)(λy.kC) in place of caseM of xñ B or yñ C.

In fact, the proof in àgure . was developed by working backwards from the CPS translation.
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We need to verify that these deànitions do, in fact make sense and cohere with
our existing rules for the reduction of pair and variant terms. For example, we
should be able to reduce π1xP,Qy to P. Using the deànitions above, we can write
π1xP,Qy = ∆k.(λx.xPQ)(λx1.λx2.kx1), and then reduce:

∆k.(λx.xPQ)(λx1.λx2.kx1)Ñβ ∆k.(λx1.λx2.kx1)PQ

Ñβ ∆k.(λx2.kP)Q

Ñβ ∆k.kP

Ñ∆ P

Furthermore, we may note that these deànitions also match deànition . from the
perspective of our type system; if we assign P : τ and Q : σ, we get

xP,Qy : (τÑ (σÑ K))Ñ K

which can also be written as ␣(τÑ ␣σ).
What we have, then, is an interesting result in programming languages moti-

vated by the Curry-Howard Isomorphism— introducing control operators to your
language somehow gives it the ability to express pairs and variants without adding
them explicitly. Similarly, the intuition behind the control áow interpretation of the
∆ operator may be applied back to our thinking about classical logic and how it is
that it can be deàned entirely in terms ofÑ and ␣.





Conclusion

T
is thesis has provided a basic outline of the Curry-Howard Isomorphism
and explored someof the subtleties of the relationship. Ourmain study case
has been that of classical logic, and the connection between theKolmogorov

translation presented in chapter  and the CPS translation from chapter  is one of
themain points that the reader should come awayunderstanding and appreciating.
This example really shows how the Curry-Howard Isomorphism can go deeper
than a simple relationship between proofs in one system of logic and terms in one
computational calculus.

There are several different directions in which the subject can be taken further.
One particularly interesting example is that of automated theorem proving and
proof assistant systems. Coq is a prominent example of a proof assistant; it relies
on a Curry-Howard Isomorphism with a system called the calculus of inductive
constructions [BC]. Coq is notable in that it has been used to formalize a com-
plete proof of the Four Color Theorem (rather than using a computer to simply ver-
ify some cases in an ad-hoc manner), as described in a paper by Georges Gonthier
fromMicrosoft Research [Gon]. Isabella is another prominent example of a proof
assistant, and is inspired heavily by an earlier proof system based on the type sys-
tem of the ML programming language [Pau].

In addition, there are further questions at the basic level of logic that can be
posed. For example, we studied how the fact that classical logic can be formulated
with only ␣ andÑ in section ., and saw that this has a Curry-Howard interpre-
tation in section .. However, it turns out that we can go even further, deàning all
of classical logic in terms of one connective, the Sheffer stoke, which is also known
as the nand connective and sometimes written Ò [End, p. ]. Presumably this
has some sort of Curry-Howard interpretation as well, but there does not appear
to be any reference to such a development in the literature.
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